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Abstract— The purpose of this work is mostly expository and
aims to elucidate the Jordan-Kinderlehrer-Otto (JKO) scheme
for uncertainty propagation, and a variant, the Laugesen-
Mehta-Meyn-Raginsky (LMMR) scheme for filtering. We point
out that these variational schemes can be understood as
proximal operators in the space of density functions, realizing
gradient flows. These schemes hold the promise of leading to
efficient ways for solving the Fokker-Planck equation as well as
the equations of non-linear filtering. Our aim in this paper is
to develop in detail the underlying ideas in the setting of linear
stochastic systems with Gaussian noise and recover known
results.

I. INTRODUCTION

Consider the gradient flow dx
dt = −∇ψ(x) in R

n, where

∇ is the gradient (w.r.t. the Euclidean metric) of a function

ψ(x), and consider the discretization

xk = xk−1 − h∇ψ(xk−1), for k ∈ N.

As is well known in finite-dimensional optimization,

xk = argmin
x

{1
2
‖x− (xk−1 − h∇ψ(xk−1))‖2}

= argmin
x

1

2
‖x− xk−1‖2 + hψ(x) + o(h). (1)

By recursively evaluating the proximal operator

xk = prox
‖·‖
hψ(xk−1)

= argmin
x

{1
2
‖x− xk−1‖2 + hψ(x)},

the solution, which depends on the choice of the step size

h, satisfies xk(h) → x(t = kh), as h→ 0.

The Jordan-Kinderlehrer-Otto (JKO) scheme, introduced

in [1], is a similar recursion in the infinite-dimensional space

of density functions with respect to the Wasserstein geometry

[2], namely,

̺k(x, h) = argmin
̺

1

2
W 2

2 (̺, ̺k−1) + hS(̺), k ∈ N, (2)

where W2(·, ·) denotes the Wasserstein-2 distance between

two (probability) density functions,

S(̺) :=
∫

Rn

̺(x) log(̺(x))dx (3)

is the negative differential entropy functional, and dx is the

volume element. I.e., (2) can be viewed as the proximal

operation proxW2

hS (̺k−1). The main result in [1] was to show

that the minimizer of (2) approximates the solution ρ(x, t)
of the heat equation

∂ρ(x, t)

∂t
= ∆ρ(x, t), with ρ(x, 0) = ρ0(x),

in the sense that ̺k(x, h) → ρ(x, t = kh), as h ↓ 0. Thus,

(2) establishes the remarkable result that the heat equation is

the gradient descent flow of the (negative) entropy integral

with respect to the Wasserstein metric.

An analogous JKO-like scheme was introduced recently

in Laugesen et al. [6] for the measurement update-step in

continuous-time filtering. More specifically, we consider the

general system of stochastic differential equations (SDE’s)

dx(t) = −∇U(x) dt+
√

2β−1 dw(t), (4a)

dz(t) = c(x(t), t) dt+ dv(t), (4b)

where x ∈ R
n, z ∈ R

m, β > 0, U(·) is a potential, the

process and measurement noise processes w(t) and v(t) are

Wiener and satisfy E [dwidwj ] = Qijdt ∀ i, j = 1, . . . , n
and E [dvidvj ] = Rijdt ∀ i, j = 1, . . . ,m, with Q,R ≻ 0,

respectively. Then x(t) and z(t) represent state and sensor

measurements at time t. Further, as usual, v(t) is assumed to

be independent of w(t) and independent of the initial state

x(0). Given the history of noise corrupted sensor data up to

time t, the filtering problem requires computing the posterior

probability distribution that obeys the Kushner-Stratonovich

stochastic PDE [17]–[19].

For the special case of trivial state dynamics, i.e., dx = 0,

and R the identity, Laugesen et al. [6] introduced

̺+k (x, h) = arginf
̺∈D2

{DKL

(

̺‖̺−k
)

+ hΦ(̺)}, k ∈ N, (5)

with

Φ(̺) :=
1

2
E̺{(yk − c(x))⊤R−1(yk − c(x))}, (6)

where yk is the noisy measurement in discrete-time defined

via yk := 1
h
∆zk, ∆zk := zk − zk−1, and {zk−1}k∈N the

sequence of samples of z(t) at {tk−1}k∈N for tk−1 := (k−
1)h. Laugesen et al. [6] proved that the LMMR equation (5)

approximates the solution of

dρ+(x(t), t) =
[

(

c(x(t), t)− Eρ+{c(x(t), t)}
)⊤

R−1

(

dz(t)− Eρ+{c(x(t), t)}dt
)]

ρ+(x(t), t), (7)

i.e., of the Kushner-Stratonovich PDE corresponding to

dx = 0, in the sense that ̺+k (x, h) ⇀ ρ+(x(t), t) over

t ∈ [(k − 1)h, kh), as h ↓ 0. Thus, they showed that



in this special case, the Kushner-Stratonovich PDE is the

gradient descent of functional Φ(·) with respect to DKL, i.e.,

computed by proxDKL

hΦ (̺−k ).

The purpose of the present paper is to develop this circle of

ideas, namely, that both uncertainty propagation and filtering

can be viewed as gradient flows in the special case of linear

stochastic systems with Gaussian noise. In fact, we consider

the general case of the linear stochastic system

dx(t) = Ax(t) dt +B dw(t), (8)

where w(t) is a Wiener process as before, though possibly

not of the same dimension as x. We suppose that the

uncertain initial condition x(0) has a known Gaussian PDF,

the matrix A is Hurwitz, and that the diffusion matrix B

is such that (A,B) is a controllable pair. For this, we

recover the well-known propagation equations for the mean

and covariance of the state x(t) out of the JKO-scheme via a

two-step optimization. The applicability of the JKO-scheme

to (8) is not immediately obvious since the development in [1]

requires the state dynamics to be in the canonical form (4a)

with the drift being a gradient and the diffusion coefficient

being a positive scalar. We further show that this two-step

optimization procedure that we introduce, can be used to

derive the Kalman-Bucy filter from a generalized version of

the LMMR equation (5). We remark that variational schemes

for estimator/observer design based on gradient flows can

also be seen as regularized dynamic inversion in the spirit

of [21].

Notation

Throughout we use bold-faced upper-case letters for ma-

trices, and bold-faced lower case letters for vectors. The

notation I stands for identity matrix of appropriate dimen-

sion, we use tr(·) and det(·) to respectively denote the trace

and determinant of a matrix, and the symbols ∇ and △
denote the gradient and Laplacian operators, respectively. We

denote the space of probability density functions (PDFs) on

R
n by D := {ρ : ρ ≥ 0,

∫

Rn ρ = 1}, by D2 := {ρ ∈
D |

∫

Rn x⊤x ρ(x)dx < ∞} the space of PDFs with finite

second moments, by Dµ,P denote the space of PDFs which

share the same mean vector µ and same covariance matrix

P :=
∫

Rn(x − µ)(x − µ)⊤ρ(x)dx. Likewise, let Dµ,τ

denote the space of PDFs which have the same mean µ and

same trace of covariance τ := tr(P ) > 0. Clearly, Dµ,P ⊂
Dµ,τ ⊂ D2 ⊂ D . We use the symbol N (µ,P ) to denote

a multivariate Gaussian PDF with mean µ, and covariance

P . The notation x ∼ ρ means that the random vector x has

PDF ρ; and E {·} denotes the expectation operator while,

when the probability density is to be specified, Eρ {·} :=
∫

Rn(·)ρ(x)dx.

II. JKO SCHEME IN GENERAL

We now discuss in some detail the JKO scheme for the

case of the diffusion process in (4a), and the corresponding

Fokker-Planck equation [4]

∂ρ

∂t
= ∇ · (∇U(x)ρ) + β−1 △ρ, ρ(x, 0) = ρ0(x). (9)

To this end we first introduce the Wasserstein metric, the

free energy, and the Kullback-Leibler divergence.

The Wasserstein-2 distance W2 (ρ1, ρ2) between a pair

of PDFs ρ1(x), ρ2(y) ∈ D (or, even between probability

measures, in general), supported on X ,Y ⊆ R
n, is

W2 (ρ1, ρ2) :=

(

inf
dσ∈Π(ρ1,ρ2)

∫

X×Y

‖x− y‖22 dσ(x,y)
)

1
2

(10)

where Π(ρ1, ρ2) is a probability measure on the product

space X × Y having finite second moments and marginals

ρ1, ρ2, respectively. It is well known that W2 : D × D 7→
[0,∞) is a metric [2, p. 208]. Further, its square W 2

2 (ρ1, ρ2)
represents the smallest amount of “work” needed to “morph”

ρ1 into ρ2 [3]. The infimum is achieved over a space of

measures, and under mild assumptions, the minimizing dσ
has support on the graph of the optimal “transportation map”

T : X 7→ Y that pushes ρ1 to ρ2. Alternatively, one may

view the optimization problem in (10) as seeking the joint

distribution of two random vectors x and y, distributed

according to ρ1 and ρ2 respectively, that minimizes the

variance E
{

‖x− y‖22
}

.

Another important notion of distance that enters into our

discussion, which however is not a metric, is the Kullback-

Leibler divergence (also known as relative entropy) be-

tween PDFs or positive measures in general. This is given

by DKL (dρ1‖dρ2) :=
∫

(dρ1dρ2
) log(dρ1dρ2

)dρ2 where dρ1
dρ2

de-

notes the Radon-Nikodym derivative. When1dρi = ρi(x)dx,

i ∈ {1, 2}, are absolutely continuous with respect to the

Lebesgue measure, then

DKL (dρ1‖dρ2) =
∫

Rn

ρ1(x) log
ρ1(x)

ρ2(x)
dx.

Gradient flow requires an energy functional, which we

denote by E (ρ) :=
∫

U(x)ρ(x)dx, where U(·) is the po-

tential energy. Then, a stochastically driven gradient flow is

modeled by the Itô SDE (4a) and the Fokker-Planck equation

(9) for the corresponding PDF as before. The stationary

solution of (9) is the Gibbs distribution ρ∞(x) = 1
Z
e−βU(x),

where the normalization constant Z :=
∫

Rn e
−βU(x)dx is

known as the partition function. The distance to equilibrium

which, in a way, quantifies the amount of work that the

system can deliver, is captured by the so-called free energy

functional F (ρ), defined as the sum of the energy functional

E (ρ) and the negative differential entropy S (ρ) given in (3),

that is,

F (ρ) := E (ρ) + β−1 S (ρ) (11a)

= β−1DKL

(

ρ‖e−βU(x)
)

. (11b)

1Here we use a slight abuse of notation in that we denote both, the
measure and the density with the same symbol.



For the case of (4a), the JKO scheme becomes

̺k (x, h) = arginf
̺∈D2

{1
2
W 2

2 (̺, ̺k−1) + h F (̺)}, k ∈ N, (12)

for step-size h > 0, and initialized by a given ̺0 (satisfying

F(̺0) < ∞). For U(x) ≡ 0, (12) reduces to (2). Solving

(12) results in a sequence of PDFs {̺k(x, h)}k∈N in D2.

It can be shown following [1] that ̺k(x, h) ⇀ ρ (x(t), t)
weakly in L1(Rn) for t ∈ [(k − 1)h, kh), k ∈ N, as h ↓ 0.

III. JKO SCHEME FOR LINEAR GAUSSIAN SYSTEMS

We now develop and solve the JKO scheme for the linear

Gaussian system in (8) with ρ0 = N (µ0,P0) and Q ≡ I,

without loss of generality. Therefore, we are concerned with

the linear Fokker-Planck (Kolmogorov’s forward) PDE

∂ρ

∂t
= −∇ · (ρAx) +

1

2

n
∑

i,j=1

∂2

∂xi∂xj

(

ρBQB⊤
)

ij
. (13)

Under the stated assumptions, it is well-known that (13)

admits a steady-state, which is Gaussian with mean zero

and covariance P∞ ≻ 0 that uniquely solves the alge-

braic Lyapunov equation AP∞ + P∞A⊤ + BQB⊤ = 0.

Also, starting from ρ0(x) = N (µ0,P0), the transient is

ρ(x(t), t) = N (µ(t),P (t)) where the µ(t) and P (t) satisfy

the following ordinary differential equations (ODEs)

µ̇(t) = Aµ(t), µ(0) = µ0, (14a)

Ṗ (t) = AP (t) + P (t)A⊤ +BQB⊤, P (0) = P0. (14b)

Below, we recover these equations using the JKO scheme.

First, in Section III-A, we explain how this is done when

A is symmetric and B ≡
√

2β−1I, β > 0, in which case,

Ax = −∇U(x) for a suitable potential. The general case,

in Section III-B, is more involved and requires to view the

drift as the gradient of a time-varying potential.

A. The case where A is symmetric and B ≡
√

2β−1I

Since B ≡
√

2β−1I, (A,B) is a controllable pair.

Further, since A is Hurwitz and symmetric, Γ := −A ≻ 0,

and utilizing the potential

U(x) :=
1

2
x⊤

Γx ≥ 0,

we can cast (8) in the canonical form (4a). Then,

E(̺) := E[U(x)] =
1

2

(

µ⊤
Γµ+ tr (ΓP )

)

,

where P is the covariance of x. Notice that E(·) depends

on the PDF of x only via its mean and covariance.

To carry out the optimization (12) over D2, we adopt

a two-step strategy. Our approach is motivated by the

observation that the objective function in (12) is a sum

of two functionals. In the first step, we choose a suitable

parameterized subset of D2 in such a way that when we

optimize the functionals 1
2W

2(̺, ̺0) and hF(̺) individually

over this chosen subspace, the arginfs (which are achieved)

of the two individual optimization problems match. Hence,

the sum of the two has the same arginf over the chosen

subspace. In the second step, we optimize over the subspace

parameters. Our choice for the parameterized set of densities

is Dµ,P ⊂ D2, i.e., the PDFs with given mean-covariance

pair (µ,P ); the choice of the optimal pair is to be decided

in the second optimization step.

The development below requires several technical lemmas

that are collected in the Appendix.

1) Optimizing over Dµ,P : Given ̺0 ≡ ρ0 = N (µ0,P0),
and a µ and P ≻ 0, we first determine

̺1 = arginf
̺∈Dµ,P

{1
2
W 2

2 (̺,N (µ0,P0)) + h F (̺)}. (15)

From Lemma 2 we see that arginf
̺∈Dµ,P

1

2
W 2

2 (̺,N (µ0,P0))

is achieved by ̺ = N (µ,P ) (uniquely). From Lemma 3,
since U(x) = 1

2x
⊤
Γx, we also know that arginf

̺∈Dµ,P

hF (̺) is

achieved by ̺ = N (µ,P ) (uniquely). Thus, ̺1 = N (µ,P ).
The infimal value in (15) is now the sum of the two infima,

1

2

[

‖ µ− µ0 ‖22 +tr

(

P + P0 − 2

(

P
1
2
0 PP

1
2
0

) 1
2

)]

+
h

2β
[

−n− n log(2π)− log det(P ) + βµ
⊤
Γµ+ β tr (ΓP )

]

. (16)

2) Optimizing over (µ,P ): Equating the gradient of (16)

w.r.t. µ to zero, results µ = φ(µ0) := (I + hΓ)−1µ0. The

recursion µk = φ(µk−1), up to first order in h, becomes

µk = (I − hΓ)µk−1 + O(h2). (17)

We see that this recursion coincides with the solution of

(14a) in the “small h” limit. Specifically, µ(t) = eAtµ0 ⇒
µk := µ(t = kh) =

(

eAh
)k

µ0 ⇒ µk = eAhµk−1 =
(I + hA)µk−1 +O(h2), which is same as (17) since Γ :=
−A. Thus, we have recovered (14a) using discrete time-

stepping via JKO scheme in the small step-size limit.

Setting the gradient of (16) w.r.t. P to zero (using Lemma

4), we obtain

I − P
1
2

0

(

P
− 1

2

0 P−1P
− 1

2

0

)
1
2

P
1
2

0 − hβP−1 + hΓ = 0. (18)

By pre and post multiplying both sides of (18) with P
− 1

2

0 ,

and letting
(

P
− 1

2

0 P−1P
− 1

2

0

)
1
2

=: Z, we arrive at

Z2 +
β

h
Z − β

h
P

− 1
2

0 (I + hΓ)P
− 1

2

0 = 0,

which admits the unique closed-form solution [13, p. 304]

Z =
β

2h

(

−I +

(

I + 4
h

β
P

− 1
2

0 (I + hΓ)P
− 1

2

0

)
1
2

)

. (19)



Expanding (19), we obtain

Z =
β

2h

[

−I +

{

I +
1

2
4
h

β
P

−
1
2

0 (I + hΓ)P
−

1
2

0 +

1

2

(

1

2
− 1
)

2!

16h2

β2
P

−
1
2

0 (I + hΓ)P−1
0 (I + hΓ)P

−
1
2

0 +O(h3)

}

]

= P
− 1

2
0

(

I + hΓ −
h

β
P

−1
0

)

P
− 1

2
0 + O(h2). (20)

Substituting Z =
(

P
− 1

2

0 P−1P
− 1

2

0

)
1
2

back into (20), squar-

ing, and rearranging, we get that

P =

(

I + h

(

Γ− 1

β
P

−1
0

))−1

P0

(

I + h

(

Γ− 1

β
P

−1
0

))−1

+O(h2)

=

(

I − h

(

Γ− 1

β
P

−1
0

))

P0

(

I − h

(

Γ− 1

β
P

−1
0

))

+ O(h2)

= Ψ(P0) + O(h2),

where Ψ(P0) := P0 + h
(

−ΓP0 − P0Γ+ 2β−1I
)

. Set the
matrix-valued recursion Pk = Ψ (Pk−1), where

Ψ (Pk−1) := Pk−1 + h
(

−ΓP0 − P0Γ+ 2β−1
I
)

+O(h2). (21)

To show that (21) indeed recovers (14b), first notice that

substituting A = A⊤ = −Γ and B =
√

2β−1I in (14b)

results the Lyapunov differential equation

Ṗ (t) = −ΓP (t)− P (t)Γ + 2β−1I

subject to P (0) = P0, which can be solved via the method

of integrating factor as

P (t) =
1

β
Γ
−1
(

I − e−2Γt
)

+ e−ΓtP0e
−Γt. (22)

Thus, for t = kh,

Pk := P (kh) = β−1
Γ
−1
(

I − e−2Γkh
)

+ e−ΓkhP0e
−Γkh

= 2β−1khI + (P0 − khΓP0 − khP0Γ) +O(h2).

Replacing k with k−1 in the latter yields a similar expression

for Pk−1. Then, subtracting these expressions for Pk−1 from

Pk we obtain that

Pk − Pk−1 = 2β−1hI − hΓP0 − hP0Γ+O(h2),

which is same as (21) derived from JKO scheme. Thus,

we have recovered the covariance evolution through Fokker-

Planck dynamics using the time-stepping procedure via JKO

scheme in the small step-size limit.

B. The case of Hurwitz A and controllable (A,B)

We scale B into
√
2B without loss of generality, and

take as initial PDF ̺0 ≡ ρ0 = N (µ0,P0). Since we allow

any Hurwitz (not necessarily symmetric) A, and any B that

makes (A,
√
2B) a controllable pair, it is not apparent if

and how one can express (8) in the canonical form (4a).

The main impediment in doing so, is twofold: (1) how to

define the potential energy U(x), and (2) how to interpret and

define the parameter β in the generic case. In the following,

we show that by two successive co-ordinate transformations,

system (8) can indeed be put in the form (4a). Similar

transformations have been mentioned in [14, p. 1464], [15]

in a different context.

1) Equipartition of energy coordinate transformation:

Consider the stationary covariance P∞ associated with

(A,
√
2B) that satisfies

AP∞ + P∞A⊤ + 2BB⊤ = 0. (23)

For a system at a stationary distribution, we define the

thermodynamic temperature θ as the average amount of

“energy” per degree of freedom, that is,

θ :=
1

n
tr(P∞),

and, thereby, β := θ−1 the inverse temperature. By pre and

post multiplying (23) with P
− 1

2
∞ , and rescaling by θ so as to

preserve the temperature in the new coordinates, we get

AepθI + θIA⊤
ep +

√
2θBep(

√
2θBep)

⊤ = 0, (24)

where Aep := P
− 1

2
∞ AP

1
2
∞, Bep := P

− 1
2

∞ B, while

the stationary covariance θI reflects equipartition of en-

ergy. The equipartition of energy co-ordinate transformation

(A,
√
2B) 7→ (Aep,

√
2θBep), corresponds to the state-

transformation x 7→ xep :=
√
θP

− 1
2

∞ x, leading to

dxep(t) = Aepxep(t) dt +
√
2θBep dw(t). (25)

This settles how β is to be defined and interpreted in the

context of JKO scheme (11) and (12). On the other hand,

Aep being similar to A, is guaranteed to be Hurwitz but not

symmetric, unless A was symmetric to begin with. Thus, it

remains for us to “symmetrize” Aep and define a suitable

potential energy U(·) as needed in (12). We do this next.

2) Symmetrization transformation: We introduce the

time-varying transformation

xep 7→ xsym := e−Askew
ep txep

where Askew
ep := 1

2 (Aep −A⊤
ep). This results in

(Aep,
√
2θBep) 7→ (F (t),

√
2θG(t)),

with

F (t) := e−Askew
ep tAsym

ep eA
skew
ep t, and G(t) := e−Askew

ep tBep,

where, similarly, Asym
ep := 1

2 (Aep + A⊤
ep). Thus, xsym(t)

satisfies

dxsym(t) = F (t)xsym(t) dt +
√
2θG(t) dw(t). (26)

Notice that F (t) is symmetric for all t. Furthermore, ob-

serve that the new coordinates xsym is simply obtained by a

(time-varying) orthogonal transformation of the equipartition

of energy coordinates xep. Hence the stationary covariance

of xsym is identical to that of xep, which is θI (from Section

III-B.1). What happens is that the covariance xsym(t) tends

to the same steady state value as t → ∞ in spite of the

fact that (26) has time varying coefficients. To see this in

different way, we can rewrite (24) as BepB
⊤
ep = −Asym

ep ,

and deduce that

G(t)G(t)⊤ = e−Askew
ep tBepB

⊤
epe

Askew
ep t = −F (t),

⇒ F (t)θI + θIF (t) +
√
2θG(t)(

√
2θG(t))⊤ = 0. (27)



The symmetrization xep 7→ xsym leaves the stationary

covariance θI invariant. This guarantees the definition of

temperature θ stays intact.

3) Recovery of the Fokker-Planck solution: We are now

ready to apply the JKO scheme to the generic stochastic

linear system dx(t) = Ax(t) dt +
√
2B dw(t), with initial

PDF ρ(x(0), 0) = N (µ0,P0). To this end, we carry out a

computation akin to the two steps in Section III-A, for the

transformed SDE (26) in the symmetrized coordinate xsym.

From there on, we recover the Fokker-Planck solution in the

original coordinate x.

Since x 7→ xsym is a linear transformation, it follows

that xsym ∼ N (µsym,Psym) whenever x ∼ N (µ,P ).
Thus, carrying out the first step of the optimization in xsym

coordinate, we get an expression similar to (16) wherein

(µ,P ) is to be replaced by (µsym,Psym), and (µ0,P0) is

to be replaced by (µsym0
,Psym0

). To carry out the second

step of optimization, notice that Asym
ep = −BepB

⊤
ep � 0,

and consequently F (t) = e−Askew
ep tAsym

ep eA
skew
ep t � 0. Thus,

considering the time-varying potential

U(xsym) := −1

2
x⊤
symF (t)xsym ≥ 0,

and setting the partial derivative of the infimal value from

first stage of the optimization w.r.t. µsym to zero, results

the recursion µsymk
= (I − hF (kh))−1µsymk−1

. Recalling

that xsym = e−Askew
ep t

√
θP

− 1
2

∞ x, we arrive at a recursion in

original coordinate:

µk = P
1
2
∞e

Askew
ep kh{(I − hF (kh))−1eA

skew
ep h}

e−Askew
ep khP

− 1
2

∞ µk−1. (28)

By a series expansion and collecting linear terms in h, one

can verify the following:

(I − hF (kh))−1 = I + hAsym
ep +O(h2),

(I − hF (kh))−1eA
skew
ep h = I + hAep +O(h2),

eA
skew
ep kh(I − hF (kh))−1eA

skew
ep he−Askew

ep kh

= I + hAep +O(h2).

Hence (28) yields

µk =
(

I + hP
1
2
∞AepP

− 1
2

∞

)

µk−1 + O(h2)

= (I + hA)µk−1 + O(h2), (29)

where the last equality follows from Aep := P
− 1

2
∞ AP

1
2
∞.

Since µ̇ = Aµ and ehA = I + hA+O(h2), in the small h

limit, equation (29) thus recovers (14a), as in Section III-A.

A similar straightforward but tedious computation leads to

the matrix recursion

Pk − Pk−1 = h(APk−1 + Pk−1A
⊤ + 2BB⊤) +O(h2),

(30)

which in the limit h ↓ 0, is indeed a first-order approximation

of the Lyapunov equation for the original system. We omit

the details for brevity.

IV. JKO-LIKE SCHEMES FOR FILTERING

In this section, we focus on the linear Gaussian filtering

problem, with process model and measurement models

dx(t) = Ax(t)dt+
√
2Bdw(t)

dz(t) = Cx(t) dt+ dv(t),

where C ∈ R
m×n, and ρ0 = N (µ0,P0). The conditional

PDF ρ+(x(t), t) = N (µ+(t),P+(t)), given measurements

up to time t, is well-known and given by the Kalman-Bucy

filter [20]

dµ+(t) = Aµ+(t)dt+K(t)
(

dz(t) −Cµ+(t)dt
)

, (31a)

Ṗ+(t)=AP+(t)+P+(t)A⊤+2BB⊤−K(t)RK(t)⊤ (31b)

that specifies a vector SDE and a matrix ODE, respectively,

for the conditional mean µ+(t) and covariance P+(t). The

initial conditions are µ+(0) = µ0, P+(0) = P0, and

K(t) := P+(t)C⊤R−1 is the so-called Kalman gain.

In the sequel, we demonstrate that by applying the two-

step optimization strategy we used before in Section III, we

can recover the Kalman-Bucy filter from LMMR-equation

(5) for the linear Gaussian case as the h ↓ 0 limit.

A. LMMR gradient descent scheme

Once again we proceed with carrying out the following

two optimization steps. First, we optimize (5) over Dµ,P ,

and then optimize the minimum value over the choice of

parameters (µ,P ).

1) Optimizing over Dµ,P : Consider ̺−k = N (µ−
k ,P

−
k )

to be our prior for the state PDF at time t = kh. Observe
that

inf
̺∈Dµ,P

DKL

(

̺‖N (µ−

k ,P
−

k )
)

= inf
̺∈Dµ,P

[∫

Rn

̺(x) log ̺(x)dx

−E̺{logN (µ−

k ,P
−

k )}
]

. (32)

and that

E̺{logN (µ−

k ,P
−

k )} = −
1

2

[

(µ− µ
−

k )
⊤
(

P
−

k

)−1
(µ− µ

−

k )

+ tr
(

P (P−

k )−1
)]

−
1

2
log
(

(2π)n det(P−

k )
)

remains invariant for all ̺ ∈ Dµ,P . Therefore, the arginf

in (32) is achieved by the Gaussian PDF N (µ,P ) (i.e., the

maximum entropy PDF with given mean-covariance), and

the infimal value is precisely DKL(N (µ,P )‖N (µ−
k ,P

−
k )).

On the other hand, notice that

inf
̺∈Dµ,P

1

2
E̺{(yk −Cx)⊤R−1(yk −Cx)} =

1

2

[

(yk −Cµ)⊤

R
−1(yk −Cµ) + tr

(

C
⊤
R

−1
CP

)]

= constant (33)



❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

Attribute ↓
Coordinate →

Original Equipartition of energy Symmetrization

State vector x xep xsym

System matrices (A,
√
2B) (Aep,

√
2θBep) (F (t),

√
2θG(t))

Stationary covariance P∞ θI θI

TABLE I: Summary of the coordinate transformations for Section III-B.

as well over Dµ,P . Hence

arginf
̺∈Dµ,P

[

DKL

(

̺‖N (µ−
k ,P

−
k )
)

+
h

2
E̺{(yk −Cx)⊤R−1(yk −Cx)}

]

= N (µ,P )

and the corresponding infimum value is

1

2

[

tr
(

(P−
k )−1P

)

+ (µ−
k − µ)⊤(P−

k )−1(µ−
k − µ)− n−

log det
(

(P−
k )−1P

)]

+
h

2

[

(yk −Cµ)⊤R−1(yk −Cµ)

+ tr
(

C⊤R−1CP
)]

. (34)

2) Optimizing over (µ,P ): Equating the partial derivative

of (34) w.r.t. µ to zero, and setting µ ≡ µ+
k in the resulting

algebraic equation, we get

(P−
k )−1

(

µ−
k − µ+

k

)

+ hC⊤R−1
(

yk −Cµ+
k

)

= 0,

⇒µ+
k = µ−

k + hP−
k C⊤R−1

(

yk −Cµ+
k

)

. (35)

On the other hand, equating the partial derivative of (34)
w.r.t. P to zero, and then setting P ≡ P+

k in the resulting
algebraic equation, we get

(P+
k )−1 = (P−

k )−1 + hC
⊤
R

−1
C ⇒ P

+
k =

(

I + hP
−

k C
⊤

R
−1

C
)−1

P
−

k = P
−

k − hP
−

k C
⊤
R

−1
CP

−

k +O(h2). (36)

With ∆zk = ykh, as in Section I,

dz(t) = ∆zk +O(h2),

µ+(t)dt = µ+
k h+O(h2),

and from (29) that

µ−
k = (I + hA)µ+

k−1 +O(h2).

These, together with (36), allow us to simplify (35) as

µ
+
k−µ

+
k−1 = hAµ

+
k−1 +P

+
k C

⊤
R

−1
(

∆zk − hCµ
+
k

)

+O(h2),

which in the limit h ↓ 0, leads to (31a).

Substituting (30) into (36) we arrive at

P+
k − P+

k−1 = h(AP+
k−1 + P+

k−1A
⊤ + 2BB⊤)

−hP+
k−1C

⊤R−1CP+
k−1 + O(h2). (37)

In the limit h ↓ 0, (37) recovers (31b).

B. Alternative JKO-like schemes for filtering

The ideas in the LMMR-scheme suggest the possibility

of alternative variational schemes to approximate stochastic

estimators. Such a viewpoint has been put forth in [21],

promoting the notion of regularized dynamic inversion. As an

example, one may consider a gradient descent with respect

to the Wasserstein distance 1
2W

2
2 , instead of KL-divergence

DKL in (5). In that case, the posterior may be constructed

according to

̺+k (x, h) = arginf
̺∈D2

1

2
W 2

2

(

̺, ̺−k
)

+ hΦ(̺), k ∈ N, (38)

where Φ is as in (6). The template of the two-step opti-

mization again applies and, specializing to the linear Gaus-

sian case, the solution of (38) in the h ↓ 0 limit, is

N (µ+(t),P+(t)), given by

dµ+(t) =Aµ+(t)dt+L
(

dz(t)−Cµ+(t)dt
)

,

Ṗ+(t) =(A−LC)P+(t)+P+(t)(A−LC)⊤ + 2BB⊤,

where L := C⊤R−1, and µ+(0) = µ0, P+(0) = P0. This

follows by noticing from Sections III-A.1 and IV-A.1 that

arginf
̺∈Dµ,P

[

1

2
W 2

2

(

̺,N (µ−
k ,P

−
k

)

+ hΦ(̺)

]

= N (µ,P ),

where the infimum value is

1

2

[

‖ µ−µ−
k ‖22 +tr

(

P + P−
k −2

(

(P−
k )

1
2P (P−

k )
1
2

)
1
2

)]

+
h

2

[

(yk −Cµ)⊤R−1(yk −Cµ)+tr
(

C⊤R−1CP
)]

.

It is instructive to compare the above with (31). In this case,

the estimator is of a Luenberger type with a static gain matrix

L which is decoupled from the covariance, unlike (31). It is

obviously not optimal in the minimum mean-square error

sense. It is only presented here as a guideline to explore

other variational schemes with desirable properties.

V. CONCLUDING REMARKS

Reformulating uncertainty propagation and the filtering

equations as gradient flows [5] is potentially transformative

[1] [6]. The full power of this viewpoint is yet to be

uncovered. Moreover, casting the iterative approximation

steps in the language of proximal operators on the space



of density functions may provide theoretical insights and

computational benefits. The purpose of the present paper has

been to highlight and elucidate the ideas in [1] and [6] in the

context of linear Gaussian systems. We hope that this study

will help to motivate further exploration of this topic.

APPENDIX

In this Appendix, we collect some lemmas that are used in

Sections III and IV. In addition, we will show in Corollary

1 below that applying Lemma 1 and 2 together enables us

to provide an alternative proof of a Theorem in [11], which

might be of independent interest.

Lemma 1: If X and Y are symmetric positive definite

matrices, then tr
(

X
1
2Y X

1
2

)
1
2 ≤

√

tr (X) tr (Y ).

Proof: From Uhlmann’s variational formula (see [7],

also Theorem 6.1 in [8]) , given any G ≻ 0, we have

tr

(

(

X
1
2Y X

1
2

)
1
2

)

≤
√

tr (XG) tr (Y G−1), (39)

where the equality in (39) is achieved for the specific choice

Gopt = Y
1
2

(

X
1
2Y X

1
2

)− 1
2

X
1
2Y

1
2X− 1

2 . Specializing

(39) for G = Y , and noting that tr (XY ) ≤ tr (X) tr (Y ),
the statement follows.

Lemma 2: Given a PDF ̺0(x) ∈ D2 with mean

µ0 ∈ R
n, and n × n covariance matrix P0 ≻ 0. Then

inf
̺∈Dµ,P

W 2
2 (̺, ̺0) equals

‖ µ− µ0 ‖22 + tr

(

P + P0 − 2
(

P
1
2

0 PP
1
2

0

)
1
2

)

, (40)

and is achieved by push-forward of ̺0(x) via an affine trans-

port map Mx+m, where M := P
1
2

(

P
1
2P0P

1
2

)− 1
2

P
1
2 ,

and m := µ − µ0, that is, the arginf for (40) is ̺(x) =
√

det(P0)
det(P ) ρ0

(

P− 1
2

(

P
1
2P0P

1
2

)
1
2

P− 1
2 (x− µ) + µ0

)

. In

particular, if ̺0 = N (µ0,P0), then ̺ = N (µ,P ).

Proof: Let ̺0 be as given, and choose any ̺ ∈ Dµ,P .

Let ̺0 and ̺ be obtained by translating ̺0 and ̺ respectively,

such that both ̺0 and ̺ have zero mean. Using (10), we can

directly verify [9, p. 236] that W 2
2 (̺, ̺0) =‖ µ − µ0 ‖22

+W 2
2 (̺, ̺0). On the other hand, it is known [10, p. 11,

Proposition 1.1.6] that

W 2
2 (̺, ̺0) ≥ tr

(

P + P0 − 2
(

P
1
2

0 PP
1
2

0

)
1
2

)

⇒W 2
2 (̺, ̺0) ≥ RHS of (40). (41)

Now consider a candidate transport map Mx + m where

M and m are functions of P ,P0,µ,µ0 as in the statement.

It suffices to prove that our candidate transport map indeed

achieves the equality in (41). To this end, directly substituting

the expressions for M and m, notice that the push-forward

has mean Mµ0 + m = µ, and covariance MP0M
⊤ =

P . So our candidate transport map (M ,m) is feasible.

To show optimality, from (10) notice that W 2
2 (̺, ̺0) =

inf
C∈Rd×d

tr(P + P0 − 2C), where C := MP0 solves P0 −
CP−1C⊤ � 0, which has known optimal solution Copt :=

MoptP0 = P0P
1
2

(

P
1
2P0P

1
2

)− 1
2

P
1
2 . Since our candi-

date M := P
1
2

(

P
1
2P0P

1
2

)− 1
2

P
1
2 satisfies tr (MP0) =

tr (MoptP0) = tr

(

(

P
1
2

0 PP
1
2

0

)
1
2

)

, the statement follows.

In the Corollary below, combining Lemma 1 and 2, we

recover a result in [11, Theorem 3.1].

Corollary 1: Given PDF ̺0 with mean µ0, covariance

P0 ≻ 0, suppose tr(P0) = τ0. For fixed µ and τ > 0,

inf
̺∈Dµ,τ

W 2
2 (̺, ̺0) =

(√
τ −√

τ0
)2

+ ‖ µ− µ0 ‖22, (42)

and is achieved by ̺(x) =
(

τ0
τ

)
d
2 ̺0

(

τ0
τ
(x− µ) + µ0

)

.

Proof: Let us choose P := τ
τ0
P0, and from (40)

observe that inf
ξ∈Dµ,P

W 2
2 (ξ, ̺0) = (

√
τ −√

τ0)
2
+ ‖ µ −

µ0 ‖22. On the other hand, for any ̺ ∈ Dµ,τ , we know from

(41) that

W 2
2 (̺, ̺0) ≥ τ + τ0 − 2 tr

(

P
1
2

0 SP
1
2

0

)
1
2

+ ‖ µ− µ0 ‖22,

where S is the covariance of ̺. Using Lemma 1, we get

tr
(

P
1
2

0 SP
1
2

0

)
1
2 ≤ √

ττ0 ⇒W 2
2 (̺, ̺0) ≥

inf
ξ∈Dµ,P

W 2
2 (ξ, ̺0) =

(√
τ −√

τ0
)2

+ ‖ µ− µ0 ‖22, (43)

and that the equality is achieved when S = P = τ
τ0
P0. In

that case, det(S) =
(

τ
τ0

)d

det(P0), and hence Lemma 2

yields the arginf ̺(x) for (42) as
√

det(P0)

det(S)
̺0

(

S− 1
2

(

S
1
2P0S

1
2

)
1
2

S− 1
2 (x− µ) + µ0

)

=
(τ0

τ

)
d
2

̺0

(τ0

τ
(x− µ) + µ0

)

.

Lemma 3: If E(·) depends on ̺ only via the mean and

covariance of ̺, then inf
̺∈Dµ,P

F (̺) is achieved by N (µ,P ).

Proof: As E(̺) ≡ E(µ,P ), hence from (11) we get

inf
̺∈Dµ,P

F (̺) = E(µ,P ) + β−1 inf
̺∈Dµ,P

∫

̺ log ̺ dx. Since

N (µ,P ) is the maximum entropy PDF under prescribed

mean µ and covariance P , hence the statement.

Lemma 4: For P ,P0 ≻ 0,

∂

∂P
tr
(

P
1
2

0 PP
1
2

0

)
1
2

=
1

2
P

1
2

0

(

P
− 1

2

0 P−1P
− 1

2

0

)
1
2

P
1
2

0 .

Proof: We refer the readers to Appendix B in [12].
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