
MAE Preliminary Examination
Mathematics Section

Tentative: Monday, April 14, 1:00pm-3:30pm
Your Name

THREE PROBLEMS WILL BE GRADED
Select the 3 problems you’ve worked, to be graded: points

Problem: /10
Problem: /10
Problem: /10

Total /30

Please give your answers/work in the space provided
Explain your work/steps clearly

Calculators are allowed but not computers



Linear Algebra: Problem 1 [10 points]:

Let:
D be a n× n diagonal matrix with all entries on the diagonal being positive,
M be an n× n symmetric and positive definite matrix, and
N be an n× n (not necessarily symmetric nor positive definite) matrix, that is invertible for simplicity.

With D,M,N as above, and U any n× n orthogonal matrix, show the following:

1. trace(DU) ≤ trace(D). [3 points]

2. trace(MU) ≤ trace(M). [4 points]

3. trace(NU) ≤ trace((NNT )1/2). [3 points]

Note: you can use knowledge of the validity of 1. to prove 2. and of 2. to prove 3.

Hints:
– Recall that the trace, trace(A), is the sum of all diagonal elements of a square matrix A.
– Recall that an n× n orthogonal matrix U is a matrix such that UUT = UTU = I , with I the identity matrix.
– Finally, recall that any matrix A has a factorization A = RΘ where R = (AAT )1/2 and Θ is orthogonal.

Workspace for Problem 1: Explain your reasoning/work here.

Solution:
1. Note that since UUT = I , for every row i,

∑
j |Uij |2 = 1. Hence, all elements in U have modulus < 1.

Therefore, trace(DU) =
∑

i diUii ≤
∑

i di|Uii| ≤
∑

i di = trace(D).

2. Any symmetric matrix can be diagonalized by an orthogonal transformation, namely, M can be written as

M = V DV T

for some V that is an orthogonal matrix. Moreover, D is diagonal, and since M > 0, all entries of D on the
diagonal are positive, and these are the eigenvalues of M . In fact, trace(M) = trace(DV TV ) = trace(D).
Then,

trace(MU) ≤ trace(V DV TU)

= trace(DV TUV ), since trace(AB) = trace(BA),

≤ trace(D), since V TUV is orthogonal and invoking statement 1.,
= trace(M).

3. Simply write N = (NNT )1/2Θ and observe that

trace(NU) ≤ trace((NNT )1/2ΘU)

= trace((NNT )1/2), since ΘU is orthogonal.
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Workspace for Problem 1: Explain your reasoning/work here.
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Ordinary Differential Equations: Problem 2 [10 points]:

Determine the phase portrait of the 2nd order differential equation ẍ = 4x− 3ẋ− x3. To do this:
i) Express the dynamics as a first-order differential equation with states[

x1

x2

]
=

[
x
ẋ

]
.

ii) Find all points of equilibrium.
iii) Linearize the dynamics near each point of equilibrium and ascertain the nature of the particular equilibrium (i.e.,
saddle point, focus, etc.).
iv) Sketch the phase portrait.

Solution:
The first-order differential equation: [

ẋ1

ẋ2

]
=

[
x2

4x1 − 3x2 − x3
1

]
The point of equilibrium e1 = (2, 0), e2 = (−2, 0) and e3 = (0, 0)

Linearization:

A =

[
0 1

4− 3x2
1 −3

]
and then compute the eigenvalues and the eigenvector of the linearized matrices

A1 = A2 =

[
0 1
−8 −3

]
, A3 =

[
0 1
4 −3

]
.

The eigenvalues of A1,2 (negative real part) and the eigenvalues of A3 are λ1,2 = 1,−4.

The phase portrait is shown as follows
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Workspace for Problem 2: Explain your reasoning/work here.
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Partial Differential Equations: Problem 3 [10 points]:

Solve the following problem for u(x, t) using the Green’s function method.

ut = kuxx for 0 ≤ x < ∞ , t ≥ 0

subject to the initial and boundary conditions:

u(x, 0) = f(x)

ux(0, t) = g(t)

(a) Find the Green’s function G(x, ξ, t, τ) that satisfies appropriate initial and boundary conditions for the above
problem.
(b) Find the solution u(x, t) as an integral of the Green’s function and the initial and boundary conditions.
(c) Find the solution u(0, t) as a function of x for f(x) = 0 and g(t) = −1.

Hint: the one-dimensional infinite domain −∞ < x < ∞ Green’s function for the heat equation is

G∞(x, t; ξ, τ) =
1√

4πk(t− τ)
e−

(x−ξ)2

4k(t−τ)

Solution:
(a) The Green’s function for the corresponding homogeneous boundary condition Gx(0, t; ξ, τ) = 0 can be found by
placing an image of equal strength at (−ξ, t), yielding

G(x, t; ξ, τ) = G∞(x, t; ξ, τ) +G∞(x, t;−ξ, τ) =
1√

4πk(t− τ)
e−

(x−ξ)2

4k(t−τ) +
1√

4πk(t− τ)
e−

(x+ξ)2

4k(t−τ)

You can easily check that it does satisfy the boundary condition Gx(0, t; ξ, τ) = 0 and decays to zero value at infinite
distance.

(b) According to the Green’s formula, the solution of the problem is then

u(x, t) = −k

∫ t

0

g(τ)G(x, t; 0, τ)dτ +

∫ ∞

0

f(ξ)G(x, t; ξ, 0)dξ

u(x, t) = −k

∫ t

0

g(τ)
e−

x2

k(t−τ)√
πk(t− τ)

dτ +

∫ ∞

0

f(ξ)
e−

(x−ξ)2

4kt + e−
(x+ξ)2

4kt

√
4πkt

(c) Evaluating the above solution at x = 0 with f(x) = 0 and g(t) = −1 and defining p = t− τ gives

u(0, t) = k

∫ t

0

1√
πk(t− τ)

dτ = −k

∫ 0

t

1√
πkp

dp = k

∫ t

0

1√
πkp

dp =

√
4kt

π
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Workspace for Problem 3: Explain your reasoning/work here.
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Partial Differential Equations: Problem 4 [10 points]:

Solve the wave equation
utt − a2uxx = 0 for −∞ < x < ∞ , t ≥ 0

subject to the initial conditions:
u(x, 0) = 0

ut(x, 0) = eikx

using:

(a) d’Alembert’s formula;

(b) Fourier transform, showing all the steps of your derivation and proving that you match the solution in (a).

Workspace for Problem 4: Explain your reasoning/work here.

Solution:
(a) We solve the Cauchy problem using d’Alembert’s formula

u(x, t) = f(x− at) + g(x+ at)

The solution with u(x, 0) = U(x) and ut(x, 0) = V (x) is

u(x, t) =
1

2

[
U(x− at) + U(x+ at)

]
+

1

2a

∫ x+at

x−at

V (s)ds

But here U = 0, so we are left with

u(x, t) =
1

2a

∫ x+at

x−at

V (s)ds

Evaluating for V (s) = eiks,

u(x, t) =
1

2a

∫ x+at

x−at

eiksds =
1

2iak

[
eik(x+at) − eik(x−at)

]
which reduces to

u(x, t) =
eikx

ak
sin(akt)

(b) Since x is infinite, we apply the Fourier transform in x:

û(ω, t) =

∫ ∞

−∞
u(x, t)e−iωxdx

The FT of the governing equation is

d2û

dt2
− (−a2ω2)û = 0 → d2û

dt2
+ (aω)2û = 0

while the FTs of the initial conditions are:
û(ω, 0) = 0

ût(ω, 0) = 2πδ(ω − k)

The solution to the ODE in the transformed domain is

û(ω, t) = A(ω) cos(aωt) + B(ω) sin(aωt)

and its time derivative is
ût(ω, t) = −aωA(ω) sin(aωt) + aωB(ω) cos(aωt)

Application of the first initial condition requires A(ω) = 0, while the second initial condition gives

B(ω) =
2π

aω
δ(ω − k)
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So we have
û(ω, t) =

2π

aω
δ(ω − k) sin(aωt)

Returning to the original domain,

u(x, t) =
1

2π

∫ ∞

−∞
û(ω, t) eiωxdω

Inserting our expression for û(ω, t),

u(x, t) =

∫ ∞

−∞

1

aω
δ(ω − k) sin(aωt)eiωxdω

The delta function eliminates all contributions except at ω = k:

u(x, t) =
eikx

ak
sin(akt)

The solution is identical to that obtained using d’Alembert’s formula.
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Workspace for Problem 4: Explain your reasoning/work here.
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