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Abstract: The present paper is a tribute to Professor Rudolf Emil Kalman, father of
Mathematical System Theory and a towering figure in the field of Control and Dynamical
Systems. Amongst his seminal contributions was a series of results and insights into the role
of positivity in System Theory and in Control Engineering. The paper contains a collection
of reminiscences by the author together with brief technical references that touch upon the
unparalleled influence of Professor Kalman on this topic.
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1. THE EARLY YEARS

The miracle years for Rudolf Kalman began in 1957,
one year before he submitted his doctoral dissertation
on the subject of sampled data systems. A constant
stream of original ideas began pouring out, ideas that
were to transform the field of control, educate and inspire
generations of theorists, and enable transformative new
technologies. Chief among those was the Kalman filter,
published in Kalman [1960], a most impactful contribution
that is ubiquitous in today’s technological advances, from
guidance and navigation systems, cellphones, industrial
controls to radar technology and vision systems. But
of no lesser importance were his insights and parallel
contributions to algebraic structure of dynamical systems,
optimization, sampled data controls, and stability theory.
The latter subject is intrinsically connected with positivity
and passivity, concepts that were central to his thinking
throughout his life.

His first paper on “Physical and mathematical mechanisms
of instability in nonlinear automatic control,” published in
Kalman [1957], became very influential in the subsequent
development of absolute stability theory (see Liberzon
[2006]) and the topic never ceized to excite his interest
and creativity. Shortly afterwards, in 1963, he published
his work on Lyapunov functions for the Lur’e problem,
Kalman [1963] inspired by Yakubovich [1962]. This work
brought to life the so-called Kalman-Yacoubovich-Popov
(KYP) lemma that highlighted the centrality of passivity
theory and was a harbinger of a great many developments
that took place in the subsequent years until the present
(Iwasaki and Hara [2005], Rantzer [1996]). The KYP
lemma proved the entry point for linear matrix inequalities
and convex optimization in control theory (Willems [1971])
and of key importance in filtering, stochastic realizations,
control design, circuit theory as well as in addressing
Kalman’s far reaching question on the inverse regulator
problem (Kalman [1964]).

Moving forward, Kalman explored this circle of ideas in
providing characterizations of stability with respect to
more general algebraic domains (Kalman [1965, 1969])

via conditions that capture positivity in a suitable sense.
When reading these works, the converse question of char-
acterizing domains via linear matrix inequalities is in-
escapable.

2. POST 1970

A duality between quadratic regulator theory and stochas-
tic realization theory, expanded upon and summarized in
P. Faurre’s 1972 dissertation (cf. Faurre et al. [1978]),
played a key role in Kalman’s thought during the fol-
lowing years. Pursuing leads in early work by K. Löwner,
Kalman sought to obtain an algebraic characterization of
minimal stochastic partial realizations (unpublished notes
by Kalman). An alternative form of the same problem
amounts to realizing a circuit with a minimal number
of passive elements (more accurately, minimal McMillan
degree) based on the value of its impedance at specified
complex frequencies. Potential leads were sought in invari-
ants of linear quadratic problems – a subject of conver-
sation between the late E. Bruce Lee and Kalman during
the “1975 Birch Island Conference on Systems Theory” in
Bruce’s cabin (Figure 1).

The topic of “positive linear systems” remained a focus
in his research proposals, motivated by applications to
circuits and modeling of random signals. However, para-
phrasing his words, progress was frustratingly slow. In
a 1976 final progress report to AFOSR he highlighted
the apparent difficulties in dealing with the “interaction
between positive and algebraic.” At that point, in the
report, he declared that “no further work on this topic is
planned in the near future.” But those who knew Kalman,
knew better, that he never gives up. Soon afterwards in
“Realization of covariance sequences,” Kalman [1982], he
sought an answer in the form of algebraic inequalities in
terms of Schur parameters.

His insights pointed to computational algebraic geometry
which, however, didn’t seem to have reached a satisfactory
stage at the time for the sought purpose. The same seemed
true for classical decision theory, in the style of Tarski
and Seidenberg. Under his direction, I began working



Fig. 1. E. Bruce Lee and Rudy Kalman at Birch Island in
1975. Picture courtesy of E.B. Lee.

on my dissertation on this topic in 1981. Early on my
dear friend Pramod Khargonekar joined me on this, and
together we worked through the classical literature on the
moment problem (Georgiou and Khargonekar [1982]). Yet
the “interaction between positive and algebraic” seemed
once again a roadblock towards the type of invariants
that Kalman sought. One more year went by before I saw
how to characterize realizations of a fixed McMillan degree
by topological methods (see Georgiou [1983, 1987b,a]). I
recall with a mix of nostalgia my last years in Gainesville
and all the ups and downs during the final stretch. My
interactions with Kalman were points of inspiration as well
as contention, due to differing views on the nature of the
problem. While the sequel of Kalman’s problem on partial
realization of covariance sequences proved especially fruit-
ful (see Byrnes et al. [1995], Byrnes and Lindquist [1997],
Georgiou [1999], Byrnes et al. [2001, 2006]), Kalman’s
vision of an algebraic characterization was never fully
accomplished. It is the sincere hope of the author that
the present paper serves as a motivation and a challenge
to others to attempt the next steps. Kalman’s dream and
quest live on.
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