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The early (miracle) years

A new approach...
20,000+ citations

Kalman, Kalman filtering
~ 1,000,000 citations

A New Approach to Linear Filtering
and Prediction Problems'

R.E. KALMAN
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CONTRIBUTIONS TO THE THEORY OF OPTIMAL CONTROL

By R. E. KaLman

1. Introduction
The purpose of this paper is to give an account of recent research on a classical
pmblem in the theory of control: the design of linear control systems so as to
the i 1 of a dratic function evaluated along motions of the
system. This problem dates back in its modern form to Wiener and Hall at about
1943 ([1], [2]) In spxte of its relatively long history, the problem has never been

f ly from a h tical point of view. Even the mmt u?;tn-

date exposmons of the subject (see, e.g., [3]) are inaccessible to the, e
tician due to the lack of precisely stated conditions and resul
The problem is qun.e bmad :md there are many
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CONTRIBUTIONS TO THE THEORY OF OPTIMAL CONTROL

By R. E. KaLman

1. Introduction
The purpose of this paper is to give an account of recent research on a classical

pmblem in the theory of control: the design of linear control systems so as to

the i 1 of a dratic function evaluated along motions of the

system. This problem dates back in its modern form to Wiener and Hall at about

1943 ([I], [2]) In spxte of its relatively long history, the problem has never been
for ly from a mathematical point of view. Even the most up»h)-
date exposmons of the subject (see, e.g., [3]) are inaccessible to the
tician due to the lack of precisely stated conditions and results.

The problem is quite broad, and there are many
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The early (miracle) years

“System theory”
methods held together
complex systems created
combinatorial questions,

CONTRIBUTIONS TO THE THEORY OF OPTIMAL CONTROL
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By R. E. KaLman
1. Introduction

R. E. KALMAN

* Algebraic Theory of Linear Systems*
1. INTRODUCTION

Blemmry wnbookljp-,::ylrtgem theory present the Laplace transform as
a magic and mysterious gadget. Somehow the difficult problem (?) of solving linear dif-

coefficients is replaced with the easy problem (?) of

ferential equations with constant ¢
tori ials and ing partial fractions. ¢ »e
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The early (miracle) years

1. Background
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When Is a Linear Control System Optimal?
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LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN
AUTOMATIC CONTROL*
By R. E. Kanmax
RESEARCH INSTITUTE FOR ADVANCED STUDY (RIAS), BALTIMORE, Mp.
Communicated by S. Lefschetz, December 18, 1962

1. About 1950, Lur’e! initiated the study of a class of (closed-loop) control

systems whose governing equations are
dz/dt = Fzx — ge(o),  d§/dt = —¢(0), o= h'z+ pi [¢9)

In (L), o, ¢, p are real scalars, z, g, h are real E
The prime denotes the transpose. F is st
real parts). ¢(o) is a real-valued, continuc
A ¢(0) = 0,0 < opl0) < o*.

We ask: Is the eq
stable) for any ¢ € A,

2. This problem is
(L) is g.a.s. for every I

DA



The early (miracle) years

Least Squares Stationary Optimal Control and the
Algcebraic Riccati Equation

PR T —
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ugh the least squares optimization
Vinear diffrential consiraints has roots going back to the

very beginnings of calculus of variations, its revival and
introduction in control theory may safely be credited to
Kalman [1]. We should also mention Newton et al. [2], The snalytcal trestment of the clas of optimizetion

Who put forward least squares techniques as & systematic problems introduced in the preceding leads to a series of

basis for the design of stationary feedback control systems.

Many of the results of this paper are inspired by some of a5 follows. We will be interested in the cace K
the results obtained by Brockett. His work has ap- 1) The Linear Matriz Inequality (LMI):

pearcd in various places in the literature and may be AK+KA+Q KB + e

found in summarized form in the recent text [3]. Other &) = [ BK+C ] o.
papers which make ample contact with the results pre-

sented here are some of the later papers by Kalman 2) The Quadratic Matriz Inequality (QMI):

[4], [5], the important paper by Popov [6], and the AK+KA— (KB+ C)RYBK+C) +Q>0.

work of Anderson (see, for example, Anderson [7] and

3) The A Riccati Equation (ARE):
Anderson and Moore [8]). ) The Algebraic Riccats Equation (ARE),

AK+ KA — (KB+ C)R-(BK+C)+0 =0
4) The Frequency-Domain Inequality (FDI):

H(G,5) = R+ C(Is — 4)7'B + B/(Is — 4)-C'

+ BUIs — 4)7QUs — )7B 2 0.
It is very well known that the ARE plays a crucial role
in the solution of the optimal control problem under
consideration. (One often gets the impression that this
equation in fact constitutes the bottleneck of all of linear
system theory.) However, it is much less appreciated
how the other relations enter into the theory. We hope
that their role will be clarified in this paper.



The seventies: realization with positivity
1972 report

1977 report

Problem:

characterize minimal system
realizations that are also passive




Partial realization with positivity

Realization of covariance sequences:
suppose €g, C1, . - - 5 Cp are the autocorrelation lags of a stationary
(zero-mean) discrete time stochastic process, i.e.,

ce = E{y(k)y(k +£)}.

Characterize possible extensions €p4+1, €42, . .. such that

i) the series
1 1 2 n n+1
F(z):=§c0+clz + 0z +...+cpz" + cpt1z +...
converges in |z| < 1 and positive real part (positive-real function)

ii) F(z) defines a rational function of minimal degree.



Partial realization with positivity

Realization of circuits from transfer function data:
suppose wp, Wi, ..., W, denote the values that the transfer
function F(z) takes at points 29, z1,...,2, in {z | |z| < 1}.
Characterize all rational functions F(z), analytic with positive real
part in |z| < 1, such that
)

F(z) := w; for all i € {0,1,...,n}.

ii) F(z) is rational function and of minimal degree.



Partial realization with positivity

Necessary & sufficient condition (existence of solutions):

ReF(S) >0

where S is the “compressed shift”, i.e., multiplication by z!
restricted on Hy © B(z)H,

B(z) = z", or N7, lz__zzzii

translates to:
a Toeplitz (Pick) matrix being positive semi-definite (respectively)

Will be assumed throughout




Partial realization with positivity

— Analytic interpolation with a degree constraint

Kalman argues that the complexity of the answer
from an engineering standpoint may not be the same
as that sought by physicists, information theorists, etc.

— Applications:

stochastic identification (Faurre, ...)
inverse problems (recently, Baratchart, ...)
circuit synthesis



Partial realization with positivity

- how does minimality square with uniqueness?




The eighties - pressing on
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Caratheodory & Nevanlinna-Pick Interpolation

— Early insights/classical

Parametrization of all solutions via an LFT
(Linear Fractional Transformation) Q: positive real

_A+BQ

F(Z) = LFTdata(Q) i.e., = m



Caratheodory & Nevanlinna-Pick Interpolation

— Early insights/classical

Parametrization of all solutions via an LFT
(Linear Fractional Transformation) Q: positive real
A+ BQ

F(Z) = LFTdata(Q) 1.e., = m

ReF(e/?) ~ ReQ(e'?)



Caratheodory & Nevanlinna-Pick Interpolation

— Classical/early insights

Parametrization of all solutions via an LFT
(Linear Fractional Transformation) Q: positive real

_ A+ BQ

F(Z) = LFTdata(Q) l.e., = m

ReF(e%) ~ ReQ(e'%)

also,
F rational < Q@ rational

Georgiou-Khargonekar 1981



Caratheodory & Nevanlinna-Pick Interpolation

— Classical/early insights

Parametrization of all solutions via an LFT
(Linear Fractional Transformation) Q: positive real

: A+ BQ
F(Z) = LFTdata(Q) 1.e., = m

However,
|n — degQ| < degF < n+ degQ

How to choose Q7
Algebraic characterization unkown?



Analytic Interpolation with degree constraint

— Topological constraints (Georgiou 1983, 1987)
Degree n solutions via Homotopy methods

For any polynomial i of degree < n,
there exists F of degree n, i.e., F = /X,
7, x polynomials of degree < n, such that

@
X@PE e

is positive real and satisfies n + 1 interpolation constraints

ReF(z) =

1 : “spectral numerator”
moving average part of an f.d. stochastic realization



Analytic Interpolation with degree constraint

— Generic cases (Georgiou 1983):

Both data sets:

{c/s or w/s | minimal realization has degree = n}
as well as the opposite,

{c/s or w/s | minimal realization has degree < n}

have open interiors (generic).

= Kalman'’s problem has a non-trivial set of solutions



1990’s & 2000’s - state of the problem

Via optimization & other methods:

Complete parametrization
{solutions of degree < n} <> {n | stable of degree < n}

Byrnes-Lindquist-Gusev-Matveev 1995 (uniqueness)
Byrnes-Landau-Lindquist 1997
Burnes-Gusev-Lindquist 1998 (KL-optimization)
Georgiou 1999

Byrnes-Georgiou-Lindquist 2001, 2003,. ..
Byrnes-Georgiou-Lindquist-Megretski 2006
Takyar-Georgiou 2007 (matrix-valued)



1990’s & 2000’s - state of the problem

Byrnes-Georgiou-Lindquist-Megretski (Trans. AMS, 2004)
Generalized interpolation in H® with a complexity constraint

K := H, © B(z)H; with B arbitrary inner (i.e., B is “all-pass”)
T bounded operator on K, commutes with §

Re(T) > 0 (necessary condition)

3 solutions F = w/x with w,x € K, ie., F(S§) =T

Further F is the unique maximizer of

F l—>/|n|2|og(ReF)



state of the problem

— Complete parametrization of degree < n solutions

Smooth parametrization <> stable spectral numerator
Multivariable interpolation (F matrix-valued)
Applications (spectral analysis, inverse problems)

Kalman'’s problem (< n?) remains open:
algebraic characterization of minimal degree
positive-real interpolants

when is the minimal degree < n?
what is the minimal degree?
are there suitable algebraic invariants?
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