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The seventies: realization with positivity

1972 report

1977 report

Problem:

- characterize minimal system   
realizations that are also passive



Partial realization with positivity

Realization of covariance sequences:
suppose c0, c1, . . . , cn are the autocorrelation lags of a stationary
(zero-mean) discrete time stochastic process, i.e.,

c` = E{y(k)y(k + `)}.

Characterize possible extensions cn+1, cn+2, . . . such that

i) the series

F (z) :=
1

2
c0 + c1z1 + c2z2 + . . . + cnzn + cn+1zn+1 + . . .

converges in |z| < 1 and positive real part (positive-real function)

ii) F (z) defines a rational function of minimal degree.



Partial realization with positivity

Realization of circuits from transfer function data:
suppose w0,w1, . . . ,wn denote the values that the transfer
function F (z) takes at points z0, z1, . . . , zn in {z | |z| < 1}.
Characterize all rational functions F (z), analytic with positive real
part in |z| < 1, such that
i)

F (zi ) := wi for all i ∈ {0, 1, . . . , n}.

ii) F (z) is rational function and of minimal degree.



Partial realization with positivity

Necessary & sufficient condition (existence of solutions):

ReF (S) ≥ 0

where S is the “compressed shift”, i.e., multiplication by z1

restricted on H2 	 B(z)H2

B(z) = zn, or Πn
i=0

z−zi
1−zz̄i

translates to:
a Toeplitz (Pick) matrix being positive semi-definite (respectively)

Will be assumed throughout



Partial realization with positivity

– Analytic interpolation with a degree constraint

Kalman argues that the complexity of the answer
from an engineering standpoint may not be the same
as that sought by physicists, information theorists, etc.

– Applications:

stochastic identification (Faurre, . . . )
inverse problems (recently, Baratchart, . . . )
circuit synthesis



Partial realization with positivity

- how does minimality square with uniqueness?



The eighties - pressing on



Caratheodory & Nevanlinna-Pick Interpolation

– Early insights/classical

Parametrization of all solutions via an LFT
(Linear Fractional Transformation) Q: positive real

F (z) = LFTdata(Q) i.e., =
A + BQ
C + DQ
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Caratheodory & Nevanlinna-Pick Interpolation

– Classical/early insights

Parametrization of all solutions via an LFT
(Linear Fractional Transformation) Q: positive real

F (z) = LFTdata(Q) i.e., =
A + BQ
C + DQ

ReF (e jθ) ∼ ReQ(e jθ)

also,
F rational ⇔ Q rational

Georgiou-Khargonekar 1981



Caratheodory & Nevanlinna-Pick Interpolation

– Classical/early insights

Parametrization of all solutions via an LFT
(Linear Fractional Transformation) Q: positive real

F (z) = LFTdata(Q) i.e., =
A + BQ
C + DQ

However,
|n − degQ| ≤ degF ≤ n + degQ

How to choose Q?
Algebraic characterization unkown?



Analytic Interpolation with degree constraint

– Topological constraints (Georgiou 1983, 1987)

Degree n solutions via Homotopy methods

For any polynomial η of degree ≤ n,
there exists F of degree n, i.e., F = π/χ,
π, χ polynomials of degree ≤ n, such that

ReF (z) =
|η(z)|2

|χ(z)|2
for z = e iθ

is positive real and satisfies n + 1 interpolation constraints

η : “spectral numerator”
moving average part of an f.d. stochastic realization



Analytic Interpolation with degree constraint

– Generic cases (Georgiou 1983):

Both data sets:

{c ′i s or w ′i s | minimal realization has degree = n}

as well as the opposite,

{c ′i s or w ′i s | minimal realization has degree < n}

have open interiors (generic).

⇒ Kalman’s problem has a non-trivial set of solutions



1990’s & 2000’s - state of the problem

Via optimization & other methods:

Complete parametrization

{solutions of degree ≤ n} ↔ {η | stable of degree ≤ n}

Byrnes-Lindquist-Gusev-Matveev 1995 (uniqueness)

Byrnes-Landau-Lindquist 1997

Burnes-Gusev-Lindquist 1998 (KL-optimization)

Georgiou 1999

Byrnes-Georgiou-Lindquist 2001, 2003,. . .

Byrnes-Georgiou-Lindquist-Megretski 2006

Takyar-Georgiou 2007 (matrix-valued)



1990’s & 2000’s - state of the problem
Byrnes-Georgiou-Lindquist-Megretski (Trans. AMS, 2004)

Generalized interpolation in H∞ with a complexity constraint

K := H2 	 B(z)H2 with B arbitrary inner (i.e., B is “all-pass”)
T bounded operator on K , commutes with S

Re(T ) ≥ 0 (necessary condition)

∃ solutions F = π/χ with π, χ ∈ K , i.e., F (S) = T

any such solution↔ η ∈ K via ReF =
|η|2

|χ|2

Further F is the unique maximizer of

F 7→
∫
|η|2 log(ReF )



state of the problem

– Complete parametrization of degree ≤ n solutions

Smooth parametrization↔ stable spectral numerator
Multivariable interpolation (F matrix-valued)
Applications (spectral analysis, inverse problems)

Kalman’s problem (< n?) remains open:
algebraic characterization of minimal degree

positive-real interpolants

when is the minimal degree < n?
what is the minimal degree?
are there suitable algebraic invariants?
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