
MAE Preliminary Examination
Mathematics Section

Monday, November 13, 2023, 9:00am-11:30noon
Your Name

THREE PROBLEMS WILL BE GRADED
Select the 3 problems you’ve worked, to be graded: points

Problem: /10
Problem: /10
Problem: /10

Total /30

Please give your answers/work in the space provided
Explain your work/steps clearly



Linear Algebra: Problem 1 [10 points]:

1a) Consider a system of linear time-invariant ordinary differential equations

ẋ(t) = Sx(t), where x(t) ∈ Rn

for n being a positive integer, and S a skew-symmetric n× n matrix; that is, S + ST = 0, where T denotes
transpose. Show that the trajectory of the system that starts from an initial condition x(0) on the unit sphere, i.e., the
Euclidean norm being ∥x(0)∥ = 1, remains on the unit sphere for all times. In other words, you need to prove that
∥x(t)∥ = 1 for all t.

1b) Consider a square matrix Q ∈ Rn×n such that for any x ∈ Rn, the Euclidian norm of Qx is the same as that of x,
i.e., ∥Qx∥ = ∥x∥. What can you deduce about the matrix Q? Specifically, you need to specify what is the value of
the determinant of Q, what is the inverse of Q, and where are the eigenvalues of Q located on the complex plane.

Workspace for Problem 1: Explain your reasoning/work here.

Solution:
1a) One can argue in several different (equivalent) ways:
Solution i) The solution of the ODE is x(t) = eStx(0), and one can readily see that

(eSt)T eSt = eS
T teSt

= e−SteSt = e(−S+S)t

= ezero matrix = identity matrix.

Therefore eSt is an orthogonal matrix for any t. It follows that

∥x(t)∥2 = (eStx(0))T eStx(0)

= x(0)T eS
T teStx(0)

= x(0)Tx(0) = 1.

Solution ii) We consider the derivative of ∥x(t)∥2 and show that this is equal to zero, and therefore, that the length of
x(t) remains constant. To this end, we compute

d

dt
x(t)Tx(t) = ẋ(t)Tx(t) + x(t)T ẋ(t)

= x(t)TSTx(t) + x(t)TSx(t)

= x(t)T (ST + S)x(t) = 0.

1b) Since ∥Qx∥ = ∥x∥ for all x,
xTQTQx = xTx,

and therefore QTQ = I , the identity matrix. Therefore, Q is an orthogonal matrix. It can be easily seen that

det(QTQ) = (detQT )(detQ) = 1,

and therefore detQ = 1. Also, Q−1 = QT , and lastly, since

Qx = λx

and x have the same Euclidean length, for any eigenvalue/eigenvector pair, i.e.,

∥x∥2 = (Qx)∗Qx = (Qx)TQx = |λ|2∥x∥2,

the eigenvalues must have |λ|2 = 1, i.e., they lie on the unit circle of the complex plane.
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Workspace for Problem 1: Explain your reasoning/work here.

Solution:
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Differential Equations: Problem 2 [10 points]:

Consider the second-order differential equation

ẍ(t) + ẋ(t)− x(t) + x(t)2 = 0.

i) Write a corresponding state-space representation in the form of two first order differential equations, with
position x(t) and velocity ẋ(t) as state variables, as you will consider the dynamics on the phase plane. Having
done that, determine:

ii) critical points, i.e., points of equilibrium.

iii) linearization of the differential equations about each point of equilibrium

iv) the eigenvalues and any real eigenvectors of the corresponding linearized models

v) the type of critical point each is (e.g., stable, unstable, focus, saddle point).

vi) draw as best as you can the phase portrait. It is important to indicate correctly the rotation about foci, i.e.,
clockwise or counterclockwise.

Solution:
i) with

x =

[
x1

x2

]
=

[
x
ẋ

]
we get the state-space representation (

ẋ1

ẋ2

)
=

(
x2

−x2 + x1 − x2
1

)
=: f(x).

ii) For f(x) = 0 we get that x2 = ẋ = 0 while x1 ∈ {0, 1} , for two points of equilibrium, respectively.
iii-v) The Jacobian is

∂f/∂x =

(
0 1

1− 2x1 −1

)
.

Thus, at:
equilibrium point linearized dynamics eigenvalues/vectors type of equilibrium

xeq. 1 =
(
0
0

)
: ẋ =

(
0 1
1 −1

)
x λ1,2 = −1∓

√
5

2 , v1,2 ∈ {
(−0.52

0.85

)
,
(
0.85
0.52

)
} saddle

xeq. 2 =
(
1
0

)
: ẋ =

(
0 1

−1 −1

)
x λ1,2 = −1±i

√
3

2 , v1,2 complex stable focus

v) The phase portrait follows:

To verify clockwise rotation about the stable focus, observe that to the right of the particular point of equilibrium, i.e.,
for ẋ = 0 and x > 1, it holds that ẍ < 0, i.e., ẋ2 < 0 and the vector field points towards decreasing values of x2.
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Workspace for Problem 2: Explain your reasoning/work here.

Solution:
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Problem 3 [10 points]:
Consider the wave equation

utt–a
2∆u = 0

in the cubic domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1, where a is a positive constant.

The boundary conditions are

∂u

∂n
= 0 on five sides of the cube at x = 0, x = 1, y = 0, y = 1, and z = 0

and
u = 0 on z = 1

The initial conditions are
u(0, x, y, z) = (1− 2y)2cos(πz/2)

and
ut(0, x, y, z) = (1− 2z)2

Using separation of variables and eigenfunction expansion, find u(t, x, y, z). The coefficients of series expansions
can be left in integral form. You may notice that the initial and boundary conditions are uniform in the x direction.

Workspace for Problem 3: Explain your reasoning/work here.

Solution:

∂2u

∂t2
= a2

[
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

]
Assume

u =
∑∑∑

ulmn

ulmn = X(x)Y (y)Z(z)T (t)

For linear equation
∂2ulmn

∂t2
= a2∇2ulmn

Differentiate and divide by ulmn

T ′′

T
= a2

(
X ′′

X
+

Y ′′

Y
+

Z ′′

Z

)

Z ′′
n + ν2nZn = 0; Z ′

n(0) = 0, Zn(1) = 0

Zn = cos νnz

νn = (2n+ 1)
π

2
, n = 0, 1, 2, · · ·

Y ′′
m + µ2

mYm = 0; Y ′
m(0) = 0, Y ′

m(1) = 0

Ym = cosµmz

µm = mπ, m = 0, 1, 2, · · ·

X ′′
l + λ2

lXl = 0; X ′
l(0) = 0, X ′

l(1) = 0

Xl = cosλlz

λl = lπ, l = 0, 1, 2, · · ·

T ′′ + a2(λ2
l + µ2

m + ν2n)T = 0

T = sinωlmnt, cosωlmnt
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where
ωlmn = a

√
λ2
l + µ2

m + ν2n = aπ
√
l2 +m2 + [(2n+ 1)/2]2

By the principle of superposition, we have

u =

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

(Almn cosωlmnt+Blmn sinωlmnt) cosλlx cosµmy cos νnz

Using the initial conditions, we get

u(0, x, y, z) =

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

Almn cosλlx cosµmy cos νnz = (1− 2y)2cos(πz/2)

∂u

∂t
(0, x, y, z) =

+∞∑
l=0

+∞∑
m=0

+∞∑
n=0

ωlmnBlmn cosλlx cosµmy cos νnz = (1− 2z)2

Almn = 0 for all l and n except l = 0 and n = 0.
Blmn = 0 for all l and m except l = 0 and m = 0.
Denoting

Am = A0m0

Bn = B00n

ωm = ω0m0 = aπ
√
m2 + (1/2)2

and
ωn = ω00n = aπ

2n+ 1

2

we have

u(t, x, y, z) = cos(πz/2)

+∞∑
m=0

Am cosωmt cosµmy +

+∞∑
n=0

Bn sinωnt cos νnz

= cos(πz/2)

+∞∑
m=0

Am cos(aπ
√

m2 + (1/2)2t) cos(mπy) +

+∞∑
n=0

Bn sin[a(2n+ 1)
π

2
t] cos[(2n+ 1)

π

2
z]

where

A0 =

∫ 1

0

(1− 2y)2dy

Am = 2

∫ 1

0

(1− 2y)2 cosµmydy, m = 1, 2, · · · ,

Bn =
2

ωn

∫ 1

0

(1− 2z)2 cos νnzdz n = 1, 2, · · · ,

Essentially, we have two solutions, one from the two-dimensional initial displacement condition
u(t = 0) = f(y) cos(πz/2), and the other for the one-dimensional initial velocity condition ∂u

∂t (t = 0) = g(z)

Alternatively, one may simplify the above solution procedure if we start by solving a 2-dimensional problem in the
y-z plane on recognizing the independence of the problem from the x coordinate. The final solution will, of course,
be the same.
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Workspace for Problem 3: Explain your reasoning/work here.

Solution:
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Problem 4 [10 points]:
We have the heat equation

ut − αuxx = 0 in the finite domain 0 ≤ x ≤ 1 and t ≥ 0

with the initial condition: u(0, x) = 0 and the boundary conditions: u(t, 0) = h0 and u(t, 1) = 0, where h0 is a
constant. Solve for u(t, x) using Laplace transform. Define any integral function that use.

You may find the following series and Laplace Transform Table useful.

1

1− ϵ
=

+∞∑
n=0

ϵn, for |ϵ| < 1

Table 1: Some Useful Laplace Transforms

f(t) F (s) = L{f(t)}
1 1

s

tn, n = 0, 1, 2, · · · n!
sn+1

eat 1
s−a

s > a

sin at a
s2+a2

s > 0

cos at s
s2+a2

s > 0

H(t− a) e−as

s
s > 0

H(t− a)f(t− a) e−asF (s)
eatf(t) F (s− a)

f(t) ∗ g(t) =
∫ t

0
f(τ)g(t− τ)dτ F (s)G(s)

fn(t) snF (s)− sn−1f(0)− · · · − fn−1(0)∫ t

0
f(τ)dτ 1

s
F (s)

erf(t/2a) 1
s
ea

2s2 erfc(as)

erfc( a
2
√
t
) 1

s
e−a

√
s

1√
πt

1/
√
s

1√
πt
e

−a2

4t e−a/s/
√
s

t−1/2e−a2/4t
√

π
s
e−a

√
s a ≥ 0

t−3/2e−a2/4t 2
√
π

a
e−a

√
s a > 0

2
√

t
π
exp

(
−a2

4t

)
− a erfc a

2
√
t

1
s3/2

e−a
√
s a ≥ 0

Workspace for Problem 4: Explain your reasoning/work here.

Solution:
Performing the Laplace transform on the PDE and the boundary conditions we get

sU − αUxx = 0

where U(x, s) = Lu with the boundary conditions

U(0, s) = h0/s

U(1, s) = 0

The solutions is

U(x, s) =
h0

s

e−
√

s
αx − e−

√
s
α (2−x)

1− e−2
√

s
α

U(x, s) =
h0

s

(
e
− x√

α

√
s − e

− 2−x√
α

√
s
) +∞∑

n=0

e
− 2n√

α

√
s
= h0

+∞∑
n=0

(
1

s
e
− x+2n√

α

√
s − 1

s
e
− 2(n+1)−x√

α

√
s

)
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Notice the inverse transform

L−1

{
1

s
e−a

√
s

}
= erfc(

a

2
√
t
)

We get

u(x, t) = h0

+∞∑
n=0

[
erfc

(
x+ 2n√

4αt

)
− erfc

(
2(n+ 1)− x√

4αt

)]
where erfc(z) is the complimentary error function

erfc(z) =
2√
π

∫ +∞

z

e−η2

dη

Thus,

u(x, t) =
2h0√
π

∞∑
n=0

[ ∫ ∞

x+2n√
4αt

e−η2

dη −
∫ ∞

2(n+1)−x√
4αt

e−η2

dη

]
=

2h0√
π

∞∑
n=0

∫ 2(n+1)−x√
4αt

x+2n√
4αt

e−η2

dη
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Workspace for Problem 4: Explain your reasoning/work here.

Solution:
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