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Abstract— In this note, we extend the notion of
Ollivier-Ricci curvature on weighted graphs with all
positive weights to the case in which the weights may
also be negative. This is done by employing the Hahn-
Jordan decomposition of signed measures, allowing
us to extend the Earth Mover’s Distance to an
extended class of measures. The resulting curvature
will be utilized to study the robustness properties
of general networks with particular implications in
cancer transcription networks to elucidate fragility
(in the sense of a rate function from large deviations
theory) with respect to those genes responsible for
maintaining cellular homeostasis as it pertains to
growth and proliferation.

I. INTRODUCTION

In previous work [26], we demonstrated that a
graph-theoretic notion of curvature was positively
correlated to robustness defined in terms of a the
rate function from large deviations theory. More
precisely, we have proposed an integrative frame-
work to identify genetic features related to cancer
networks and to distinguish them from the normal
tissue networks by geometrical analysis of the
networks provided by The Cancer Genome Atlas
(TCGA) data. This relationship was exploited to
show that curvature could be regarded as a cancer
hallmark.

The underlying notion of curvature on weighted
graph is based on the Wasserstein 1-metric [21]
from optimal mass transport theory [30]. This is
called Ollivier-Ricci curvature. As such, one needs
all the correlations to be positive giving well-
defined positive measures in order to define this
notion of graph curvature. In the present work,
based upon the Hahn-Jordan decomposition of a
signed measure [18], we extend the definition of
Ollivier-Ricci curvature to the more realistic case
in which one allows both negative and positive

Fig. 1. This paper extends the notion of discrete Ricci cur-
vature on graphs for signed measures. In the sense of resource
allocation, this is akin to notions redistributing “profit” and
“debt” between two parties in an optimal manner

weights (correlations) in our cancer networks. Fig-
ure 1 illustrates this concept in the context of
resource allocation.

This will also allow one to formally consider
directed graphs in which one allows both negative
and positive weights. To illustrate this method,
results will be first shown for toy-like networks
to motivate intuition. Then, our focus will shift
attention towards a short example on Liver Hep-
taoceullar Carcinoma whereby we examine areas
of fragility and its relationship to uncontrolled
cellular growth. We note that a complete biological
understanding and merits of the proposed method
will be a subject of future work - our intention here
is to introduce the mathematical underpinnings of
a much needed extension as it relates to network
robustness (curvature).

The remainder of the present note is outlined as
follows: In the next section, we revisit background
on Ricci curvature and its connection to functional
robustness. Section IV introduces a compatible
(highly parallelizable) discrete notion of Ricci cur-
vature for the case in which one deals with an
undirected graph with positive weights. Following
this, Section V provides an extension of Ollivier-



Ricci curvature for the case of positive and negative
weights via a Hahn-Jordan decomposition. Proof-
of-concept results are then given in Section VI and
we conclude with remarks on future research in
Section VII.

II. CURVATURE OF NETWORKS

Since the object of interest for a cancer network
will be a weighted graph (see Section VI), we
will consider notions of curvature that best fit this
mathematical model and can lead to interesting new
quantitative biological insights. Accordingly, we
will first sketch some material on curvature before
moving on to the proposed notions for networks
modeled as graphs.

A. Background on Ricci curvature

In order to motivate generalized notions of
Ricci curvature suitable for complex networks, we
will begin with an elementary treatment of cur-
vature following [10], [31], [32]. Let M be an
n-dimensional Riemannian manifold, x ∈ M , let
TxM denote the tangent space at x, and u1, u2 ∈
TxM orthonormal vectors. Then for geodesics
γi(t) := exp(tui), i = 1, 2, the sectional curvature
K(u1, u2) measures the deviation of geodesics
relative to Euclidean geometry, i.e.,

d(γ1(t), γ2(t)) =
√

2t(1− K(u1, u2)

12
t2 +O(t4)).

(1)
The Ricci curvature is the average sectional curva-
ture. Namely, given a (unit) vector u ∈ TxM , we
complete it to an orthonormal basis, u, u2, . . . , un.
Then the Ricci curvature is defined by Ric(u) :=
1

n−1
∑n

i=2K(u, ui). (There are several different
scaling factors used in the literature. We have
followed [10]). It may be extended to a quadratic
form, giving the so-called Ricci curvature tensor.

We want extend this notions to discrete graphs
and networks. For discrete spaces corresponding to
networks modeled as graphs, ordinary notions such
as differentiability needed to define Ricci curvature
as in the previous section do not make sense. There
is however a very nice argument due to Villani
[32] that indicates a possible way to getting around
such difficulties via two approaches to convexity.

More precisely, let f : Rn → R. Then if f is C2,
convexity may be characterized as

∇2f(x) ≥ 0

for all x. This is called by Villani an analytic
definition of convexity (as the usual definition of
Ricci given above). On the other hand, one can
also define convexity in a synthetic manner via the
property that

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y),

for all x, y ∈ Rn, and t ∈ [0, 1]. In the latter case,
no differentiability is necessary.

Following [17], [20], one may define a synthetic
notion of Ricci curvature in terms of so-called
displacement convexity inherited from the Wasser-
stein geometry on probability measures. This will
be explicated in the next section. the references
therein.

B. Curvature and robustness
There have been a number of approaches (see

[6], [7], [19], [21] and the references therein) to
extending the notion of Ricci curvature to more
general metric measure spaces. At this point, the
exact relationship of one approach as compared
to another is unclear. Roughly, the techniques
fall into two categories: the first generalizing the
weak k-convexity of the entropy functional on the
Wasserstein space of probability measures as in
[6], [17], [20], and the second directly working
with Markov chains to define the generalization [7],
[19], [21] on networks. Finally there is a notion of
“hyperbolicity” due to Gromov [13] based on the
“thinness” or “fatness” of triangles compared to the
Euclidean case. For our purposes, it seems that the
work of [17] seems most relevant. We therefore
outline this approach.

Let (X, d,m) denote a geodesic space, and set

P(X) := {µ ≥ 0 :

∫
X
µdm = 1}, (2)

P∗(X) := {µ ∈ P(X) : lim
ε↘0

∫
µ≥ε

µ logµdm <∞}.(3)

We define

H(µ) := lim
ε↘0

∫
µ≥ε

µ logµdm, for µ ∈ P∗(X),

(4)
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which is the negative of the Boltzmann entropy
S(µ) := −H(µ); note that the concavity of S is
equivalent to the convexity of H . Then we say that
X has Ricci curvature bounded from below by k
if for every µ0, µ1 ∈ P(X), there exists a constant
speed geodesic µt with respect to the Wasserstein
2-metric connecting µ0 and µ1 such that

S(µt) ≥ tS(µ0)+(1−t)S(µ1)+
kt(1− t)

2
W (µ0, µ1)

2,

(5)
for 0 ≤ t ≤ 1. This means that changes in entropy
and curvature are positively correlated. We express
this relationship as

∆S ×∆Ric ≥ 0. (6)

We will describe a specific notion of Ricci cur-
vature and entropy on graphs below. We just note
here that changes in robustness, i.e., the ability of
a system to functionally adapt to changes in the
environment (denoted as ∆R) is also positively cor-
related with entropy via the Fluctuation Theorem
[8], [11], and thus with network curvature:

∆R×∆Ric ≥ 0. (7)

See Section III below for a discussion of the
Fluctuation Theorem. Since the curvature is very
easy to compute for a network as we will see in
Section IV, this may be used as an alternative way
of expressing functional robustness.

III. FLUCTUATION THEOREM

We give now an intuitive discussion of the
Fluctuation Theorem [8], [11]. Recall that if pε(t)
denotes the probability that the mean deviates by
more thanε from the original (unperturbed) value
at time t, then

R := lim
t→∞,ε→0

(−1

t
log pε(t)).

This is the rate function from large deviations
theory [29].

On the other hand, evolutionary entropy S may
be characterized in this setting as

S := lim
t→∞,ε→0

(
1

t
log qε(t)),

where qε(t) denotes the minimal number of ge-
nealogies of length t whose total probability ex-
ceeds 1− ε. Thus the greater the qε(t), the smaller
the pε(t) and so the larger the decay rate. The
Fluctuation Theorem is an expression of this fact
for networks, and can be expressed as

∆S ×∆R ≥ 0, (8)

Considering (5), we conclude that changes in
robustness (∆R) is also positively correlated with
the network curvature, as stated in (7). This latter
relationship will be a key in studying the robustness
of cancer networks. Indeed, according to the work
done in [?] and [35], it seems that in many cases the
normal protein interaction networks possess a lower
entropy than their cancerous analogues; hence from
our above discussion they are less robust. This
could be justified as the ability of oncoproteins
to better respond to the changes in the cellular
environment due to their disorganized arrangement
which leads to possession of higher degrees of free-
dom. Since the curvature is positively correlated to
the robustness of networks and easier to compute,
it can help in quantifying the robustness in terms
of the adaptability of networks. In Section VI,
curvature will be applied to certain cancer networks
to differentiate them from normal tissue networks.

IV. OLLIVIER-RICCI CURVATURE: POSITIVE

WEIGHTS

In this section, we will sketch an approach to
Ricci curvature due to Ollivier [21], [22] that
seems ideal for studying network robustness. The
approach was developed as a discrete analogue
of a defining property of Ricci curvature in the
continuous case. The idea is that for two very
close points x and y with respective tangent vectors
w and w′, in which w′ is obtained by a parallel
transport of w, the two geodesics will get closer
if the curvature is positive. This is reflected in the
fact that the distance between two small (geodesic
balls) is less than the distance of their centers. Ricci
curvature along direction xy reflects this, averaged
on all directions w at x. Similar considerations
apply to negative and zero curvature [33].

More formally, we have for (X, d) a metric space
equipped with a family of probability measures
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{µx : x ∈ X} we define the Olliver-Ricci curvature
κ(x, y) along the geodesic connecting x and y via

W1(µx, µy) = (1− κ(x, y))d(x, y), (9)

where W1 denotes the Earth Mover’s Distance
(Wasserstein 1-metric), and d the geodesic distance
on the graph. For the case of weighted graphs of
greatest interest in networks, we put

dx =
∑
y

wxy

µx(y) :=
wxy
dx

,

the sum taken over all neighbors of x where wxy
denotes the weight of an edge connecting x and y
(it is taken as zero if there is no connecting edge
between x and y). All the interaction weights here
are positive. The measure µx may be regarded as
the distribution of a one-step random walk starting
from x. As is argued in [21], this definition is more
inspired from an approach such as that given via
equation (1). An advantage of this, is that it is
readily computable since the Earth Mover’s Metric
may be computed via linear programming [?], [32].

Moreover, it is interesting to note that if we
define the Laplacian operator via

∆f(x) = f(x)−
∑
y

f(y)µx(y), f real-valued function,

this coincides with the usual normalized graph
Laplacian operator [15]. It is also interesting to note
in this connection that if k ≤ κ(x, y) is a lower
bound for the Ricci curvature, then the eigenvalues
of ∆ may be bounded as k ≤ λ2 ≤ . . . λN ≤ 2−k;
see [15] for the exact statement. Note that the
first eigenvalue λ1 = 0. This relationship is very
important since 2 − λN measures the deviation of
the graph from being bipartite, i.e., a graph whose
vertices can be divided into two disjoint sets U and
V such that every edge connects a vertex in U to
one in V . Such ideas appear in resource allocation
in certain networks.

V. OLLIVIER-RICCI CURVATURE: POSITIVE AND

NEGATIVE WEIGHTS

The correlation networks we will be considering
have both positive and negative weights, and so one

needs a notion of curvature for this case as well,
i.e. for weighted undirected graphs with weights
wxy that may be either positive and negative. Ac-
cordingly, we need an extension of the Wasserstein
distance for signed measures. Following [18], em-
ploying the Hahn-Jordan decomposition, one can
get a notion of Ollivier-Ricci curvature as follows.

Let dx =
∑

y∼xwxy. We assume that dx 6= 0.
Let W be the set of all weights. Set

W+ := {wxz > 0}, W− := {wxz < 0}.

Case 1: dx > 0.

µ+x (z) =
wxz
dx

, wxz ∈W+,

= 0, otherwise;

µ−x (z) =
−wxz
dx

, wxz ∈W−;

= 0, otherwise.

Case 2: dx < 0.

µ+x (z) =
wxz
dx

, wxz ∈W−,

= 0, otherwise;

µ−x (z) =
−wxz
dx

, wxz ∈W+;

= 0, otherwise.

Then clearly,

µx = µ+x − µ−x ,
µy = µ+y − µ−y .

We define

W1(µx, µy) := W1(µ
+
x + µ−y , µ

+
y + µ−x ).

This is under the hypothesis that dx 6= 0 and dy 6=
0. If either is 0, we set W1(µx, µy) = 0.

We define the Ollivier-Ricci curvature as

W1(µx, µy) = (1− κ(x, y))d(x, y).

In the next Section, we use this result to define
curvature (and therefore robustness) on varying
network structures.
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Fig. 2. Two synthetic examples represent classical structures
of a “star” network and a corresponding random network.

VI. RESULTS

This section provides preliminary results of the
proposed method.

A. Toy Networks

We begin with two classical network structures
that exist in literature when examining a notion
of robustness, namely a star-like network and a
corresponding random network. To ensure a fair
comparison, each of the networks as seen in Figure
2 comprise of 200 nodes and 400 edges for which
we assigned positive and negative weights in a
random fashion. Intuitively, graph robustness as
it is measured here very loosely highlights nodes
whose random walks are equally likely (i.e., un-
certainty is increased if a ”hop” from node x is
equally likely to adjacent nodes y). Motivated by
this basic concept, we chose to assign weights
based on several uniform intervals in which the
variances increases. Specifically, we measured the
average Ricci curvature for these networks over
the adjacency when edge weights were chosen to
be: (a) all ones (b) rand [-.5, 1], (c) rand [0,
1], (d) rand [-.5, 1], and (e) rand [-1 1]. The
following results are presented in Figure 2 and
as expected, curvature decreases as variances of
weights is increased and is unimpeded when values
are chosen in the negative regime.

B. Liver Hepatocellular Carcinoma

One of the main attractions in working on signed
measures is its implications in biological networks
for which correlation network data may be used

in the context of drug targeting [26], [35]. As
such, we examined normal and cancerous expres-
sion samples of liver cancer (LIHC) derived from
the publicly available TCGA database using the
Broad Institute Firehose. This particular network
is visualized in Figure 3 for which we examine a
set of 500 cancer related genes of varying types
of cancers as studied in [26]. In particular, this
data was used to test our hypothesis that under
metastasis, cellular growth remains unchecked and
there is a “breakdown” in certain tumor suppressor
like genes as opposed to oncogenes. This remark
relates to an increase in fragility towards tumor
suppressors. To understand such activity of possible
indirect and direct interactions, we define a nodal
scalar curvature measure: M(x) :=

∑
x κ(x, y) and

utilize this to measure gene activity in our data set.
As such, Figure 3C presents scalar curvature

results of the top five genes ranked by increases
in fragility for LIHC. Here, it is shown that the
gene GPC3 and EXT1 exhibit the greatest increases
in fragility and specifically, the gene GPC3 has
been noted in controlling cell migration, negatively
regulating cell growth and inducing apoptosis with
its down-regulation being marked in several cancer
types. Thus, from a biological sense, it would
appear that such genetic dysfunction would relate
to an increase in fragility - a property now seem-
ingly captured by curvature. Moreover, another
interesting insight relates to the gene EXT1 (apart
of the EXT gene family) that have been recently
implicated in the role of liver regeneration. Thus,
a marked increase in fragility is again pertinent
to liver cancer. A similar argument can be seen
with NTRK3 and FANCC gene which again is
responsible for protein production that delays the
onset of apoptosis.

This said, we should note that the above practical
results are very limited. Our primary motivation
here is to simply introduce the mathematical under-
pinnings of extending Wasserstein distance towards
signed measures on graphs and to ensure that such
results are reasonable in the context of networks.
One careful aspect that needs further attention
relates to a notion of “auto-annihilation” and is
discussed in the next section.
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TABLE I
AVERAGE RICCI CURVATURE RESULTS FOR SYNTHETIC NETWORKS WHEN WEIGHTS ARE CHOSEN FROM UNIFORMLY.

VII. FUTURE WORK & SUMMARY

This paper extends the notion of the Earth
Mover’s Distance on networks via the Hahn-Jordan
decomposition of signed measures. In doing so,
we are able to define curvature-based quantities
on signed networks with particular implications in
understanding robustness and fragility of biological
cancer (correlation) networks. This was followed
by preliminary results on synthetic networks as
well as understanding localized changes in genes
in liver cancer.

Given the importance of directed signed graphs
role in biological networks, we note one key area
(and possible drawback) of the proposed method. In
particular, due to the rearrangement of distribution
in the decomposition, there is also an implicit in-
direct rearrangement of the cost matrix required in
the computation of the Wasserstein 1-metric. Akin
to an economics perspective, if we alternatively
view this rearrangement as distributing “profit” and
“debt”, it would be logical progression for one
to first ensure that debt is resolved through profit
before redistributing profit to another party. This is
referred to as “auto-annihilation” and is particularly
important in graphs in the currently formulated
approach, i.e., nodes “far away” in network struc-
tures such as a “chain” will appear to be closer, in
the Wasserstein sense, resulting in higher curvature
(increases in robustness). Therefore, further study
with potential constraints on auto-annihilation will
be necessary and will be a subject of future work.
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